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Abstract

Developments in computational omics technologies have provided new 
means to access the hidden diversity of natural products, unearthing 
new potential for drug discovery. In parallel, artificial intelligence 
approaches such as machine learning have led to exciting developments 
in the computational drug design field, facilitating biological activity 
prediction and de novo drug design for molecular targets of interest. 
Here, we describe current and future synergies between these 
developments to effectively identify drug candidates from the plethora 
of molecules produced by nature. We also discuss how to address key 
challenges in realizing the potential of these synergies, such as the 
need for high-quality datasets to train deep learning algorithms and 
appropriate strategies for algorithm validation.
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biological activity data for large numbers of (protein) targets and chemi-
cal structures. On the basis of chemical similarity, advanced machine 
learning techniques can use these data to obtain models that are able 
to predict the potential activity of untested chemical structures within 
these extensive chemical collections. Moreover, these methods can also 
be used to systematically analyse large datasets routinely produced 
from extended molecular dynamics studies and identify hidden pat-
terns in the protein dynamics7,8. This has led to exciting successes that 
have advanced the understanding of the complex interplay between 
small molecules and protein macromolecules. Examples include new 
computer-suggested chemical structures (de novo design)9, drug 
repurposing through the prediction of unexpected activities and guid-
ing medicinal chemistry approaches to modify and optimize drug 
molecules for their biological effects (both on and off target)10.

There is thus great potential for cross-fertilization between the 
fields of omics-based natural product discovery and computational 
drug design (Fig. 1). The use of AI could lead to a rapid acceleration of 
scientific progress in these fields and to a convergence of their methods 
and directions. For example, scientists have started to apply machine 
learning — a subfield of AI that generates insights by using algorithms 
to recognize patterns from data — to the discovery and structural char-
acterization of natural products and to predict relationships between 
structure and pharmaceutical properties.

However, researchers in these fields have interacted very little so 
far. In this Review, we present an integrated perspective of a group of 
scientists from both areas based on an interactive workshop that dis-
cussed new ways to connect these research areas and jointly leverage 
the power of AI to use the vast chemical diversity of the biosphere for the 
development of new drugs. We first describe applications of AI in natural 
product research, including genome and metabolome mining, structural 
characterization of natural products and prediction of the targets and 
biological activities of natural products. We then discuss a key challenge 
in realizing the potential of AI in the field — the creation and maintenance 
of large, high-quality datasets with which to train algorithms — and 
how this could be addressed. We also consider the pitfalls in training 
algorithms, such as overfitting, and approaches to avoid them (Box 1).

Uses of AI in natural product research
Natural product genome and metabolome mining
Several AI technologies have been developed to accelerate the discov-
ery of natural products by predicting biosynthetic genes and metabolite 
structures from sequence or spectral data, respectively. Identifying 
natural product BGCs still largely relies on rule-based methods such 
as those used in antiSMASH11 and PRISM12. Although these approaches 
are successful at detecting known BGC classes, they are less proficient 
at identifying novel types of BGC or unclustered pathways13,14. In these 
more complex cases, machine learning algorithms have been shown 
to offer significant advantages over rule-based methods. For example, 
the hidden Markov model-based method ClusterFinder15, the deep 
learning approaches DeepBGC16, GECCO17 and SanntiS18, and several 
genome mining algorithms for ribosomally synthesized and post- 
translationally modified peptides (RiPPs)19–22 each use deep learn-
ing or support vector machines to identify BGCs not captured using 
canonical rule-based annotation approaches. These methods were 
trained on sequence-based features such as gene families, protein 
domains and amino acid sequence properties. Although they still have 
a higher false positive rate than rule-based approaches and also suf-
fer from false negatives for known types of BGC, they have already 
demonstrated utility in identifying novel classes of natural product 

Introduction
Bacteria, fungi, plants and animals produce a wide range of specialized 
metabolites, also known as natural products. Across the tree of life, these 
comprise hundreds of thousands of different chemical structures —  
including peptides, polyketides, saccharides, terpenes and alkaloids —  
that facilitate an organism’s ability to thrive in a particular environ-
ment. They have crucial roles in complex inter-organismal interactions, 
functioning as signals, weapons, nutrient-scavenging agents and stress 
protectants to mediate competition and collaboration. In the host–
microbiome context, specialized metabolites mediate competition 
and collaboration between microbes and their host.

These natural products have historically been applied with remark-
able success as antibiotics, chemotherapeutics, immunosuppressants 
and crop protection agents. Natural products remain a promising 
source for the discovery of such drugs based on characteristics such as 
their relatively high degree of three-dimensionality (as opposed to the 
often ‘flat’ synthetic structures), which may be important in modulat-
ing challenging drug targets, and their origins as natural metabolites, 
which makes them likely to be substrates for transporter systems that 
can enable drugs to reach their targets1,2.

Although the popularity of natural product discovery programmes 
in the pharmaceutical industry diminished between roughly 1990 and 
2010 owing to the rise of combinatorial chemistry and high-throughput 
screening3, there has been a recent renaissance in natural products 
research in both academia and small biotech start-ups. This renaissance 
is catalysed by the availability of large-scale omics data, which allows 
deeper access to the hidden chemical treasure troves of the biosphere. 
The genes for most specialized metabolite biosynthetic pathways in 
bacteria and fungi (and some in plants and animals) appear as clus-
ters in the genome of the producing organisms: more than 2,500 of 
these biosynthetic gene clusters (BGCs) and their products have now 
been characterized experimentally4. This physical clustering has the 
potential to facilitate the identification of millions of putative biosyn-
thetic pathways for novel molecules through computational genomic 
analysis5, which could provide starting points for drug discovery.

In the field studying natural products, artificial intelligence (AI) 
approaches are now being developed to predict (parts of) chemical 
structures of BGC products based on DNA sequence alone, fuelled by 
data on known biosynthetic pathways and their chemical products, 
which is increasingly standardized and stored in public databases. 
Although this helps in identifying molecules with new rather than 
known chemical structures (dereplication) and in linking molecules 
to their biosynthetic genes6, there is an urgent need for more effective 
ways to filter and prioritize the enormous predicted natural product 
biosynthetic diversity to identify drug leads.

In the field of computational drug design, AI strategies are being 
developed that may help to address this challenge by providing better 
understanding of structure–activity relationships and by predicting 
macromolecular targets for natural products based on their chemi-
cal structures. Here, two main approaches are traditionally used: on 
the one hand, statistical modelling focuses on finding correlations 
between chemical structure and biological activity, termed quantita-
tive structure–activity relationship (QSAR) modelling; on the other 
hand, structure-based research attempts to fit 3D chemical structures 
to protein targets (docking) and subsequently study their behaviour 
on the nano- to millisecond timescale (molecular dynamics).

For both fields, AI methods have opened up new possibilities in 
the design, synthesis and biological profiling of existing and new small 
molecules. Central to these methods are public databases that provide 
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biosynthetic pathways13. For example, the decRiPPter algorithm, aimed 
to predict novel RiPP families, identified pristinin, which belongs to a 
novel class of lanthipeptides19 (Fig. 2). In addition, DeepRiPP, thanks 
to its deep learning-based RiPP precursor detection module, enabled 
the discovery of the RiPPs deepflavo and deepginsen, whose precur-
sor peptides were encoded distantly from any of their associated 
biosynthetic enzymes21.

Whereas genome mining algorithms can hint at biosynthetic 
potential, metabolomics allows direct detection of biosynthesized 
components, even if their precise structures are unknown. However, 
inferring molecular structures and substructures from mass spec-
trometry (MS) data is far from straightforward. Therefore, AI has been 
leveraged to target common challenges in MS-based metabolome 
mining23, including library matching and searching using mass spectral 
similarity metrics24,25, molecular formula annotation26,27, molecular 
class annotation28,29 and retention time prediction30. The efficacy of 
these algorithms is still limited by the relatively small sets of tandem 
MS (MS/MS) spectra annotated with the fragment ion chemical struc-
tures of their corresponding metabolites. However, these algorithms 
can be enhanced by imputing missing data; for example, by predicting 
molecular fingerprints or simulated spectra from metabolite structures 
directly28. Similarly, NMR metabolome mining tasks are undergoing 
transformation31, as deep learning provides new avenues towards 
improving NMR spectrum reconstruction, denoising32, peak picking, 
J-coupling prediction33 and spectral deconvolution34.

Ultimately, AI algorithms that link genome-mined BGCs and gene 
cluster families to untargeted metabolome-mined spectra and pre-
dicted molecular classes should be developed. For example, a new 
deep learning algorithm was recently published that can predict bio-
synthetic routes from natural product chemical structures, which could 
provide a basis for matching with BGCs35. Such algorithms will help to 
de-orphan BGCs and molecular structures to address the large anno-
tation gap between genomics and metabolomics. This may allow the 
combination of sequence and metabolome data to predict metabolite 
structures synergistically.

Structural characterization of natural products
Successful natural product drug discovery studies require the abil-
ity to unambiguously solve the structures of isolated compounds36. 
This task is challenging owing to the chemical complexity of metab-
olites existing in nature. Structure elucidation requires the collection, 
analysis and compilation of multiple data types, which may include 
NMR, infrared (IR), ultraviolet (UV), electronic circular dichroism 
(ECD) and X-ray spectroscopy, high-resolution MS (HRMS), MS/MS, 
and experimental and/or computational inspection of the encoded  
enzymes within the producing BGC37,38. Recently, the microcrystal elec-
tron diffraction (MicroED) technique, which has the potential to accel-
erate structure elucidation by allowing analysis of submicron-sized 
crystals of chemical compounds, was added to this arsenal39,40.

In general, significant efforts have been made to improve the 
structural characterization of natural products through method-
ological, instrumentational and computational means, such as quan-
tum chemistry-based theoretical calculations and AI-based structure 
predictions from MS and NMR data. Since as early as 1960, AI has been 
used to complement rule-based approaches in de novo identification of 
unknown compounds from MS data41,42. Subsequently, AI has been used 
to predict molecular formulae from MS spectra43, match MS spectra to  
compounds in molecular databases using deep neural networks41,43, 
elucidate structures de novo as SMILES strings from MS/MS spectra44 

and predict chemical properties and identify small molecules from 
MS1 and collisional cross section (CCS) data45.

Similarly, AI has been used to augment NMR-based structure 
elucidation and annotation. Computer-assisted structure elucida-
tion (CASE) programs46 reduce erroneous structural assignments by 
generating a probability-based ranking of all possible structures given 
an NMR dataset, which can guide structure determination. Exam-
ples include the convolutional neural network-based tool SMART 2.0, 
which guided the discovery and structure elucidation of a novel class 
of natural products including the new macrolide symplocolide A47, 
SMART-Miner48 and COLMAR49, which identify and annotate primary 
metabolites from the NMR spectra of complex mixtures, and DP4-AI, 
which combines quantum chemistry-based theoretical calculations 
of NMR shifts with a Bayesian approach that assigns correctness prob-
abilities to candidate structures, and with objective model selection 
for picking peaks and reducing noise50,51. One drawback of quantum 
chemistry-based theoretical calculations of NMR shifts lies in the need 
for extensive exploration of a metabolite’s conformational space, which 
is computationally demanding for conformationally flexible mole-
cules. Machine learning models such as ASE-ANI52 have been developed 
to address this issue by filtering force field-generated conformations 
and thus reducing the computational cost.

Predicting targets and biological activity
One of the most important application areas for AI in natural product 
drug discovery is prediction of the macromolecular targets of the natu-
ral products, their associated biological activities and possible toxici-
ties. Accurate predictions of these characteristics will provide direct 
clues as to which areas of chemical space (Box 2) are most promising 
for drug discovery. This will be key to the potential success of genome 
mining, which currently results in lists of candidate BGCs that are too 
large, with few strategies available to target efforts towards parts of 
natural product space (Box 2) with actual pharmaceutical potential. 
AI techniques, in combination with other technologies, can help to 
address this challenge (Fig. 3).

Natural product target elucidation. The progress of novel natural 
products towards being selected as drug candidates is often ham-
pered by lack of knowledge about their targets, which impedes their 
preclinical testing and rational optimization. Given the complexity 
of metabolite isolation and handling, large-scale experimental deter-
mination of mechanisms of action for these molecules is not feasible 
owing to the costs and effort required. Computational models that 
rapidly predict the most likely targets from the molecular structure 
are therefore an area of active research53. Virtually all computational 
drug discovery approaches have been successfully applied to eluci-
date targets of natural products, including docking54, clustering55, 
bioactivity fingerprints56, pharmacophores57 and machine learning58. 
In some cases, this has also led to new insights regarding the mecha-
nisms of action of natural products that were already in clinical trials59. 
Although applicability is currently limited, given this success and the 
increasing accuracy of advanced machine learning models, we expect 
further developments in this area that will lead to tailored and further 
improved models.

Classical cheminformatics- and pharmacophore-based predictions 
of bioactivity. Methods that rely on the use of classical cheminformat-
ics and computer-assisted drug discovery tools to predict bioactivities 
for natural products are plentiful53. For example, the direct application 

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | November 2023 | 895–916 898

Review article

Genomics Transcriptomics Proteomics Metabolomics Structural data Bioactivity

Chemical space and compound classification Chemical structure elucidation Ecological roles and macromolecular targets

N - V L L G T Y

C V A D G R I W

N N I S V V - C

GAGTGCAAGTCGC
CGTAGATTACACA
AATTGGAGATTAC
ACAAATTGGCGCT
GAAGATTACACAA
AATTGGGCTCACA
GGCGCTCATGCAG
GAAGATTACACAA
AATTGGGCTCACA

Data

Knowledge and applications

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

na
n

N

S

OH
O

HH
N

O

O

a  Non-machine learning

CC1(C(N2C(S1)C(C2=O)NC(=O)C
(C3=CC=CC=C3)N)C(=O)O)C

Artificial neural networks

Computer vision

c  Deep learning

b  Traditional machine learning

SMART NMR

Correlation and regression

Metabologenomics

Dimension reduction

SOM-based target prediction

Clustering

Gene cluster families

DECIMER

Natural language processing

MS2LDA

N

S

OH
O

HH
N

O

O

N

S

OH
O

HH
N

O
O

OH

O

N

S

OH
O

HH2N

O

N

S

OH
O

HH
N

O
O

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | November 2023 | 895–916 899

Review article

of the ensemble-based popular prediction methods PASS60 and SEA61 to 
natural products have shown some successes. Given the distinct chemi-
cal structures and physicochemical properties of natural products55,62, 
the most successful applications use additional preprocessing steps 
or rely on chemical descriptions and representations that are agnostic 
to the chemical differences between natural products and the train-
ing data of synthetic compounds. For example, the SPiDER method, 
based on self-organizing maps, was specifically developed to predict 
the bioactivities of molecules and has been successfully applied to 
predict the biological activity of macrocyclic natural products55,62 and 
fragment-like natural products57.

Other successful applications of bioactivity predictions have 
used representations such as 3D pharmacophore matching57 of bio-
activity signatures coupled to deep neural networks63,64. A notable 
approach consists of constructing learned representations using the 
deep learning-based chemprop message-passing neural network65. 
Such models capture essential properties of molecules without directly 
using classic chemical fingerprints and have enabled the prediction of 
the bactericidal activity of the synthetic chemical compounds halicin64 
and abaucin66, as well as eight additional molecules with antibiotic 
properties structurally distinct from known antibiotic classes64 (Fig. 2).

Molecular dynamics simulations and structure-based prediction of 
bioactivity. Structure-based approaches use spatial information about 
a protein target to predict a compound’s binding mode. This informa-
tion can be obtained from experimentally determined structures (for 
example, with X-ray crystallography) or via deep learning-based model-
ling approaches such as AlphaFold67. Then, potential binding modes 
can be enumerated via strategies such as molecular docking with 
protein dynamics accounted for via molecular dynamics approaches. 
These methods are computationally expensive, but have been taking 
advantage of both hardware (graphics processing unit (GPU) com-
puting) and software improvements68. Structure-based methods can 
provide a wealth of information; for example, the applicability and use 
of the free-energy perturbation (FEP) method has recently increased 
substantially in academic and industrial drug discovery projects69. 
Molecular docking, molecular dynamics and FEP could be extended 
to study affinities of natural products.

Sequence- or BGC-based predictions of bioactivity. A growing num-
ber of approaches have been used to predict bioactivities based on DNA 
and/or protein sequence data from BGCs with machine learning12,70,71, and  
other strategies have the potential to do so in the near future.

One approach that leverages knowledge of existing small mol-
ecules is to predict the final product of a BGC and infer its activity from 
this prediction directly, as exemplified by PRISM12. One issue with this 
method is the challenge faced in predicting activities for BGCs with 
poorly predicted structures, where even small mistakes in the final 
prediction could yield vastly different activities for the real compound. 

As substructure prediction is more robust, use of discrete substructural 
features such as β-lactam rings or specific amino acids may produce 
more accurate results for a broader range of BGCs.

Alternative approaches emerging for bioactivity prediction draw 
on the field of natural language processing (NLP). NLP-based methods 
such as word2vec72, originally developed for context-aware embedding 
of words within sentences in text documents, have been extended to 
embed protein domains within BGCs using pfam2vec16. DeepBGC, 
a de novo BGC prediction tool16, represents predicted BGCs using 
pfam2vec-derived features from protein domains; these features are 
then supplied to a random forest classifier to predict natural product 
activity. Building on the DeepBGC framework, Deep-BGCpred imple-
ments dual-model serial screening and a ‘sliding window’ strategy for 
more accurate BGC boundary detection71. Just as NLP has revolution-
ized other fields, we expect continued, rapid advances in applications 
of NLP for BGC and bioactivity prediction.

Of note, the sequence boundaries for BGCs predicted by mining 
tools are not precise, often missing portions of the BGC or fusing them 
with others. To use BGC sequence data as input for machine learning, 
it is generally necessary for an expert to manually update the BGC 
boundaries. Improvements in BGC prediction will therefore be vital 
for such bioactivity prediction methods and remain an area where 
further research is needed.

Bioactivity predictions based on self-resistance, regulatory or 
evolutionary features. Bacteria have long been known to harbour 
resistance genes that enable them to withstand the effects of anti-
biotic natural products that they themselves produce73. Numerous 
antimicrobial resistance determinant databases are available, such 
as the Comprehensive Antibiotic Resistance Database (CARD)74,  
a National Database of Antibiotic Resistant Organisms (NDARO) and 
ResFinder75. To leverage resistance information, various algorithms 
have been created to attempt to link these resistance genes with 
BGCs, as the resistance genes are necessary to confer immunity in the 
host76,77. A recent study incorporated both general protein domains 
and resistance genes to create a more robust feature set; this method 
proved accurate when sufficient training data were available, such as 
for antibacterial prediction in bacterial BGCs70.

As an additional layer of biological information, transcription 
factor networks and their cognate regulatory elements can be used to 
classify BGCs on the basis of how they are controlled and to which (envi-
ronmental) signals they respond. The EvoMining framework78 is based 
on the concept that streptomycetes adapt to their ecological niche by 
evolving their primary and secondary metabolism in response to their 
environment79. Regulatory networks that control BGCs and the cognate 
signals that unlock their biosynthesis may provide key information on 
the function of the natural products they specify. Regulatory networks 
have so far been largely ignored in genome mining approaches but may 
well be a key determinant for biological understanding and function 

Fig. 1 | Applications of artificial intelligence in natural product and drug 
discovery. Classical analyses typically use only a small fraction of datasets of 
various types, such as genomics, transcriptomics, proteomics, metabolomics, 
structural data and bioactivity data. Artificial intelligence (AI) methods can 
help to integrate different data types to learn complex feature relationships 
and develop meaningful hypotheses. AI methods that can have a key role in 
natural product drug discovery include, but are not limited to: non-machine 
learning methods (part a) such as correlation and regression (for example, 

linking metabolomic and genomic data190); traditional machine learning 
methods (part b), such as self-organizing maps (SOMs) (for example, for 
macromolecular target prediction221) and clustering (for example, grouping 
gene cluster families222); and deep learning (part c), such as convolutional 
neural networks (for example, for chemical structure elucidation47), computer 
vision (for example, automatic chemical image recognition166) and natural 
language processing (for example, topic modelling for chemical substructure 
exploration and annotation223).
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prediction. Whereas BGCs predict what types of metabolite may be 
produced, regulatory networks can be harnessed to estimate how BGCs 
are controlled and — notably — in response to which signals. This infor-
mation may serve as a beacon to find BGCs or metabolites required for  
specific purposes, such as responses to stress or disease. This could, 
for example, be used to predict which gene clusters are expressed in 

mutualist microbes in response to pathogen invasion, which may help 
to prioritize BGCs for antibiotic discovery.

Emerging AI methods in natural product drug discovery
In all of the application areas mentioned above, AI technology is still in 
its infancy and suffers from a lack of (high-quality) standardized data. 

Box 1

Standard practices for evaluating a machine learning model
‘Garbage in, garbage out’ is a well-known concept in machine learning 
that is intuitive to understand, but without proper model validation it 
can be challenging to identify the true predictive power of a model. 
There are two key points to keep in mind when assessing a model: 
data balancing and model evaluation on an independent test set.

Data balancing
Datasets that are used for machine learning are usually not 
homogeneous. Imbalance can exist in multiple ways that lead to 
incorrect model evaluation.

 • Over-representation of one or more data labels. Consider a binary 
classification problem for drug–target interaction with a dataset of 
10,000 positive and 100 negative data points. Without addressing 
this imbalance before training, the model will likely always predict 
an interaction between drug and target regardless of the input. 
The model will be correct 99% of the time even though it has no 
predictive power.

 • Over-representation of one or more data features. This is a 
very common imbalance in biological data: some species and 
molecule types have been researched far more extensively than 
others, leading to datasets with an over-representation of certain 
sequences or molecular structures. Models trained on such data 
without consideration for this type of imbalance usually seem to 
perform very well, as they make good predictions for sequences 
or molecules from over-represented phylogenetic branches or  
compound classes. Poor predictions on under-represented 
clades often go unnoticed: either the few mispredictions in the 
independent test set form such a small proportion of the total 
tested data points that they do not affect the average performance 
much; or worse, the under-represented clades do not appear in 
the test set at all.

These data imbalances have to be targeted at three stages of 
model development.

 • Data selection for training and test sets before model training. 
For each type of data label and data feature, data points should first 
be filtered for duplicates or near-duplicates and subsequently be 
divided proportionally across training and test sets. For sequence 
data, pre-filtering could mean selecting one representative of a 
phylogenetic clade and excluding the rest; for compound data, 
one could cluster based on chemical similarity and include 
only one member for each cluster. This avoids (near)-duplicates 
in training and test sets that would yield an automatic correct 
prediction. Proportional division of the resulting data points 

across training and test sets based on class and feature labels 
(for example, 80% training and 20% test for each label) ensures 
that the model can be separately evaluated on each data subclass, 
resulting in more accurate model evaluation.

 • Sampling and data weighting during model training. When a 
model is not instructed otherwise, it will prioritize overall accuracy. 
Often, this means that the model tolerates mispredictions for 
under-represented data classes. To prevent this, data can be 
weighted during model training: under-represented classes should 
receive higher weights or contribute more towards a model’s loss 
function such that the model penalizes prediction errors for those 
classes more than prediction errors for over-represented classes. 
Alternatively, it is possible to undersample or oversample the 
dataset to artificially reduce or expand the dataset such that each 
data class is proportionally represented. Both approaches result in 
models that should be more generally applicable and less biased 
towards over-represented data labels or features.

 • Class-specific model evaluation after model training. To evaluate 
how the model performs for each data subclass, regardless of how 
many data points belong to that class, it is important to assess 
predictive power for each class separately. This can be done 
for data labels with true or false positive or negative rates, and for 
data features by assessing performance for each sequence or 
compound cluster.

Cross-validation and independent test sets
Usually, machine learning algorithms are not trained just once: 
developers have to play around with input features, model 
parameters and model types before they find a model that works. 
A frequent inaccuracy in this process is that the same test set is 
often used for evaluation of these in-between models and for the 
evaluation of the final model. At this point, the test set is no longer 
truly independent, as decisions that influence model performance 
have been made based on the test set. Thus, overfitting of the model 
may remain unnoticed this way. Therefore, it is crucial to hold out an 
independent test set before any training and only use this test set 
to assess the model’s performance at the very end of development. 
Monitoring model performance during development can be 
done by selecting a validation set from training data or by doing 
cross-validation with all training data. Optimally, multiple runs should 
be performed with a representative standard deviation to be able 
to statistically test observed improvements for significance. When 
selecting (cross-)validation sets, it is equally important to take into 
account data imbalance.

http://www.nature.com/nrd
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However, refined approaches for building machine learning models using 
sparse or variable training set data are being developed, and new (often 
community-driven) initiatives to curate or generate high-quality datasets 
are starting to emerge. Together, these advances suggest that major 
improvements in AI methodological accuracy are within reach. Below, we 
discuss algorithmic developments that could have a significant impact 
and then consider data generation and standardization challenges that 
will need to be addressed to exploit the full potential of these algorithms.

Molecular featurization methods. Complex molecular data are made 
machine readable through featurization, and the extent to which the 
most important information in a dataset can be captured concisely 
is crucial for the success of machine learning algorithms (Fig. 4). 
Simplification is inherent to featurization. In rare cases, this can lead 
to clashes whereby two or more molecules are represented by the same 
fingerprint. Hence, a featurization technique that aligns with the goal 
of the use should be carefully chosen.
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Fig. 2 | Example compounds discovered using artificial intelligence 
approaches. The synthetic compound halicin and related molecules were 
discovered using a deep neural network trained to predict antibiotic activity from 
chemical structure64. The structures of the rivulariapeptolides and symplocolide 
A were predicted from complex microbial extracts using a convolutional neural 
network28,152. Pristinin A3 was discovered using a support vector machine 

that mines pangenomes to prioritize novel ribosomally synthesized and 
post-translationally modified peptide (RiPP) precursors within operon-like 
structures in the accessory genome of a genus19. Deepflavo and deepginsen 
were discovered in part using natural language processing to predict their RiPP 
precursors and their cleavage patterns from genomes21.
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The most ubiquitous method for featurizing a molecule is to 
convert its molecular structure into a sequence of bits or counts80. 
Algorithms to create such fingerprints are readily implemented in 
cheminformatic software packages such as RDKit (see Related links) 
and the Chemistry Development Kit81; however, molecule features can 
be manually determined as well82.

Circular fingerprints have enabled the most accurate identifica-
tion of structurally related natural products83–86. However, circular 
fingerprints were found to be less useful than pharmacophore-based 
descriptors for scaffold hopping from natural products to synthetic 
mimetics87. Other recent examples are MAP4 fingerprints, which 
combine substructure and atom-pair concepts and can be used to 
distinguish bacterial from fungal natural products88,89. Also, features 
created from short molecular dynamics simulations can be used to 
accurately predict partition coefficients, solvation free energies or 
even ligand affinity90–94. Recent approaches to ‘k-merize’ 3D shapes95, 
which can be sampled from molecule conformers, may also provide 
promise for fingerprinting, as they may take into account the 3D shape 

of molecules. Conversely, compound features that do not describe 
the compound structure at all can also be helpful, as exemplified by 
bioactivity fingerprints63,96–99.

Deep learning. A diverse array of AI algorithms have been developed 
over the past decade, many of which have been successfully applied to 
natural product research (Fig. 1). One machine learning technology that 
has recently received considerable attention and application is deep 
learning. Deep learning has the flexibility to capture nonlinear relation-
ships and to accept non-tabular input that extends the applicability 
of AI for natural product computational research to non-Euclidean 
domains100,101. Deep learning for molecular function prediction on 
molecular graphs sometimes outperforms simpler machine learning 
models on circular fingerprints65, although this seems to vary between 
datasets and applications102,103. Furthermore, explainable AI methods 
have been shown to improve interpretability of such deep learning 
models104,105; for example, in the assessment of preclinical relevance106 
and for pharmacophore and toxicophore identification107,108.

Box 2

Visualizing and navigating chemical space
Chemical space — typically defined by using multiple compound 
properties of interest, such as physicochemical properties — is 
vast and largely unexplored224. Just ‘drug-like’ chemical space, 
composed of all compounds that comply with Lipinski’s ‘rule-of-
five’ guidelines for oral bioavailability225, has been estimated to 
encompass ~1060 compounds, and even the largest chemical libraries 
used for computational screening usually encompass only ~1010 
compounds. Importantly for the context of this article, however, the 
study that underlies Lipinski’s rule225 identified natural products as 
common exceptions, and the chemical features of natural products 
and typical compounds in the screening libraries of pharmaceutical 
companies differ. These library compounds are often planar, 
synthetic small molecules that comply with Lipinski’s rules, with mass 
<500 Da, whereas natural products typically have greater size and 
3D complexity.

Exploring chemical space is a daunting task, not only because of 
the sheer quantity of compounds that can be (virtually) enumerated, 
but also because the description and labelling of compounds is by 
definition a multidimensional problem. For visualization purposes, 
a high-dimensional space will be reduced to only two or three 
dimensions. Also, depending on the properties of interest, the 
chemical space to be explored will be constructed differently. 
Still, given that most of chemical space is unexplored, taking the 
challenge of solving the multiparameter optimization problem to 
navigate chemical space is considered a promising strategy for 
identifying novel drug candidates226–228.

A common way to reduce dimensionalities to navigate chemical 
space is via principal component analysis (PCA). PCA of chemical 
properties has revealed that both drug molecules and natural 
products occupy a very similar topological diversity distribution, 
which was not the case for combinatorial compounds229. Another 
method is t-distributed stochastic neighbour embedding (t-SNE), 

which has been used successfully for the design of new drug classes, 
for example, new kinase inhibitors226. A recent development to 
t-SNE is the uniform manifold approximation and projection (UMAP) 
algorithm, which is less computationally expensive than the previous 
approach and can therefore be applied to larger datasets227. More 
recently, a Tree MAP (TMAP) algorithm was developed to visualize 
data sets with sample sizes up to around 107 in a tree layout228. In 
this article, using TMAP, a tree of all the compounds in the ChEMBL 
database (1.13 million) with their associated biological assay data was 
constructed within 10 min.

The application of unsupervised learning approaches (such 
as PCA, t-SNE, UMAP and TMAP) to reduce dimensionalities in 
chemical space data can be used to infer the likely biological 
activity of compounds and ultimately identify new scaffolds. This 
approach has proved successful in the small-molecule discovery 
field, and we believe its application to natural products will open up 
new avenues to characterize and address, among others, biological 
activity and pharmacokinetic properties. It would be exciting to 
implement the newly developed dimensionality reduction tools, 
with their improved computational capabilities, in mapping both 
natural product and small molecules, to identify overlapping 
chemical space and ultimately transfer knowledge between the 
two fields.

A starting point could be the merging of the large Papyrus 
database on drug-like molecules with existing natural product 
databases230. Molecular standardization of Papyrus could be applied 
to the natural product databases to determine whether additional 
rules or procedures are required. The resulting database could be 
used as a dataset to apply existing visualization and dimensionality 
reduction methods. A subsequent challenge is that the application of 
these methods should be validated using known synthetic molecules 
and natural products.

http://www.nature.com/nrd
http://www.rdkit.org


Nature Reviews Drug Discovery | Volume 22 | November 2023 | 895–916 903

Review article

Featurization matrix

Machine learning Macromolecular target and/or activity prediction

Genetic features Other omics features Chemical features Phenotype patterns

Omics datasets Metabolomics/structural data Source organism and bioactivity

N - V L L G T Y

C V A D G R I W

N N I S V V - C

GAGTGCAAGTCGC
CGTAGATTACACA
AATTGGAGATTAC
ACAAATTGGCGCT
GAAGATTACACAA
AATTGGGCTCACA
GGCGCTCATGCAG
GAAGATTACACAA
AATTGGGCTCACA

Resistance

BGCs

Primary 
metabolism

Transporters

O*
*

O

*
*

*
*

O

N

Featurization of data

Data from experiments and/or databases

. . .

Fig. 3 | Predicting biological activities and macromolecular targets from 
genomic, metabolomic and phenotypic data. Omics datasets can be mined 
to identify genetic features of natural product biosynthetic pathways, such 
as resistance genes, transporters and links with primary metabolism, which 
are predictive of the biological activity or macromolecular target of the 
products of the pathway. Metabolomics and NMR (in concert with analysis of 

biosynthetic genes) can be used to identify chemical features of metabolites that 
are predictive of certain activities or targets. Finally, large-scale standardized 
phenotypic bioassays are key. There is considerable potential for artificial 
intelligence approaches to then predict targets and activities based on combined 
sets of genetic and chemical features of natural products and their biosynthetic 
pathways. BGC, biosynthetic gene cluster.
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Applications of deep learning include molecular graph neural 
network approaches109–112; for instance, for predicting drug–target 
binding affinity113, SMILES-based approaches for de novo drug-like 
molecule generation114,115, graph-based de novo molecular generation116, 
and property prediction117,118 and surface mesh-based approaches for 
protein pocket-conditioned molecular representations119. Moreover, 
encoder–decoder architectures are used to featurize compounds for 
virtual screening from different input formats120–122. A comprehensive 
overview of deep learning molecular representations, which can be 
applied to molecular structure data in natural product research, is 
provided in ref. 123.

One of the most notable deep learning approaches of past years is 
AlphaFold67, which can predict the 3D structure of proteins from their 
primary amino acid sequence by learning from the entire corpus of the 
Protein Data Bank. Since the landmark breakthrough by AlphaFold, accu-
rate modelling approaches building on this work continue to raise the 
bar124 by tackling challenges such as multimeric structure prediction125. 
For natural product research, structural prediction is highly relevant, 
as it can, for example, help to predict the substrate specificities across 
natural product biosynthetic enzyme families or help to predict the 
evolution of drug resistance by target modification. The precedent 

set by AlphaFold suggests that deep learning has the potential to solve 
long-standing problems in natural product computational research, 
although natural product data are currently much sparser.

As deep learning for natural product computational research is 
still in its infancy, caution should be applied to its predictions126,127. 
To build trust and use the full potential of deep learning, we believe a 
set of best practices needs to be established for using deep learning 
techniques in natural product research128,129.
•	 Compare the performance of new deep learning models with 

simpler models to validate and motivate the trade-off between 
interpretability and prediction results130–134.

•	 Clarify the scope in which the model optimally performs by defin-
ing its applicability domain and adding confidence estimates to 
predictions135,136.

•	 Evaluate the model through cross-validation and use of a true 
hold-out set, avoiding a random splitting approach with a pref-
erence for chemical clustering or temporal splitting131, and, if 
applicable, including prospective experiments. Owing to the 
practice of publishing synthetic compounds as chemical ana-
logues with a structure–activity relationship, random splitting 
for validation overestimates the ability of models to generalize. 
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Fig. 4 | Chemical featurization techniques. Numerous featurization 
technologies are available to encode chemical information in a manner that 
machine learning techniques can process. These technologies range from  
simple physicochemical properties, via commonly used circular fingerprints,  

to advanced 3D and neural net-based encoders. Use of an appropriate 
featurization method is key, as the interpretation of a machine learning model 
is based on the features on which this model is trained. Although possible, 
combinations of featurization techniques are not common.
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Therefore, chemical clustering or temporal splitting is essential 
to truly validate created models131.

•	 Understand the results of a new model. If allowed by the chosen 
method, map what the algorithm learned back to input features 
and provide proper visualizations that allow interpretation of 
results for bench scientists106,108,137.

Deep learning algorithms will definitely not always be the most 
suitable tools138. Nonetheless, we do expect that they will become 
increasingly useful to address challenges such as structure elucidation 
and activity prediction as datasets in compatible formats grow.

Approaches to address data limitations. One of the biggest chal-
lenges for deep learning in natural product research is open access 
to large curated datasets, which is discussed in the next section. 
‘Data-hungry’ algorithms such as deep learning will only improve 
performance if training datasets are sufficient to support model com-
plexity. One solution to reduce the number of effectively required data 
points is to use weights from pre-trained models on larger chemical 
datasets. Using pre-validated and pre-trained chemical models such 
as ChemBERTa139 or MoleculeNet102 reduces the computational load 
required to train new models from scratch. In many cases, pre-trained 
models will also yield higher prediction accuracies140.

Although deep learning techniques can overcome issues of incom-
plete sample labelling and small datasets, semi-supervised learning 
(combining labelled with unlabelled data) can assist with learning on  
datasets with incomplete labelling141,142. This has been applied in the 
past, for example, to improve substrate specificity predictions of 
natural product biosynthetic enzymes using transductive support 
vector machines, where this helped to map the shape of unlabelled 
sequence space to better know how queries would relate to labelled 
data points143. An alternative is transfer learning144, a strategy in which 
knowledge from a task learned on an extensive dataset can then be 
transferred to a related task for which fewer data are available. This 
can improve model efficiency and mitigate issues relating to low-data 
regimes145, for example, in de novo molecular design146–148.

Active learning techniques, which guide the selection of unla-
belled data for labelling through experimentation, can also be deployed 
when labelled training data are limited149. This has been successfully 
applied to identify small molecules that inhibit the protein–protein 
interaction between the anticancer target CXC chemokine receptor 4  
and its ligand by actively retrieving informative active compounds 
that continuously improved the adaptive structure–activity model150. 
Multiple practical challenges remain before active learning can be 
broadly deployed149, many of which revolve around the time require-
ments and cost of standardized experimental data acquisition. This 
might explain why active learning has not yet been broadly deployed 
in natural product research, where experiments are commonly com-
plex. For example, CANOPUS28, a deep neural network-based struc-
ture class annotation tool that is based on MS spectra, uses other AI 
tools including ClassyFire151 and NPClassifier29 to label data and thus 
train the network. This enabled the structural elucidation of the novel 
rivulariapeptolide protease inhibitors from complex mixtures28,152. 
With increasing experimental resolution and automation, we 
believe that active learning will play a central part in future natural  
product research.

Similarly, reinforcement learning, which steers the output of a 
machine learning algorithm towards user-defined regions of optimality 
via a predefined (computational) reward function, has shown promise 

in de novo design towards attractive regions of chemical space153–155, for 
rule-based organic chemistry and for retrosynthesis prediction156–159.

Data sources and data standardization
High-quality training datasets are crucial to the success of AI algo-
rithms. Unstructured datasets (for example, unannotated MS data) can 
be used for unsupervised learning applications such as dimensionality 
reduction and bioactivity prediction. By contrast, supervised learn-
ing requires training data that are both accurately annotated and of 
sufficient scope to answer the question being addressed. This is a 
particular challenge for natural products applications in which the 
breadth of chemical space is high but the coverage of most published 
datasets is low. Data augmentation and synthetic data generation, 
although valuable techniques, should be carried out with care to avoid 
the accumulation of bias. In addition, data error is a challenge in the 
field. Heterogeneous biological public data generated in many labs 
tends to provide multiple sources of error that can hamper highly 
sensitive deep learning methods160,161. Integrating data from differ-
ent datasets and ensuring that annotation methods are consistent 
is therefore a major bottleneck for the development of training sets 
for machine learning. In this section, we explore the characteristics 
and attributes necessary to create high-quality datasets to advance 
natural product discovery, including discussion of the current state  
of natural product databases (Table 1) and data dissemination, the need 
for data standardization, annotation and integration and the creation 
of training sets.

The natural product database landscape
The landscape of natural product databases is large and diverse, 
but is also highly fragmented, and it currently contains few compre-
hensive and well-curated data resources162. Unfortunately, natural 
product-related data are often under-represented or not annotated 
as natural products in large generalist databases (such as PubChem, 
ChEMBL, Reaxys and Scifinder); for example, as of January 2023, only 
8,951 natural products have a ChEMBL identifier according to Wikidata 
(see Related links). Additionally, documentation of data sources, acqui-
sition and changes — known as data provenance — is not well maintained 
in most natural product databases. For example, literature citations or 
information on source organisms and associated BGCs may be miss-
ing. Furthermore, although some databases (such as ChEMBL163 and 
BindingDB164) include bioassay data for pure compounds, very few 
include bioassay data for natural product extracts and fractions. Finally, 
some natural product databases lack options for full data download, 
or are not licensed for open use by academic groups. Together, these 
issues severely limit the availability of amenable datasets to train 
AI models.

Challenges with natural product data dissemination
Literature curation. Scientific publication remains the dominant 
mechanism for disseminating new natural product information. Unfor-
tunately, automated data extraction from natural product journals is 
often impossible because data are not in machine-readable formats, 
despite the existence of simple solutions such as compact identifiers165. 
Database completeness is also hampered by the broad spectrum of 
journals that feature natural product research, including many journals 
that are not natural products specific.

Consequently, database developers must manually curate arti-
cles to convert them into structured data formats. Curation difficul-
ties include image-to-structure conversion, absence of core data 

http://www.nature.com/nrd
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(for example, BGC sequence), resolution of name conflicts (multiple 
structures with the same name, or structures with multiple names) 
and extraction of data and metadata for biological assays. Improve-
ments are underway for structure recognition from images using 
DECIMER 1.0 (refs. 166,167) and through new formats for reporting  
of chemical structure data168. Nevertheless, high-quality digitization of  
research data into structured open formats remains an unsolved 
challenge. This is further complicated by the byzantine and overly 
restrictive copyright rules that currently govern journal articles. 
Finally, because most natural product databases focus on only one 
feature of natural product data, there is presently high redundancy in 
curation efforts, as the existence of minor variations in the extracted 
data (for example, structure standardization methods or character 
encodings for compound names) may interfere with linking records 
between databases.

One solution to this issue would be to encourage authors to include 
a standardized machine-readable file for each compound described in 
the paper, similar to the cif file required for each X-ray structure. This 
machine-readable file could contain crucial information about each 
structure (for example, SMILES, compound name, availability and 
location of spectral data, source organism and BGC) and would offer 
a central point of reference for data dissemination and automated 
database importation by natural product-centric resources.

Data deposition. Several of the larger natural product data reposi-
tories, including Minimum Information about a Biosynthetic Gene 
cluster (MIBiG)169, the Natural Products Atlas (NP Atlas)170,171, Global 
Natural Product Social Molecular Networking (GNPS)172, Natural Prod-
ucts Magnetic Resonance Database (NP-MRD)173 and Norine174 offer 
mechanisms to accept user-deposited data (Fig. 5). However, without 
clear incentives to deposit data, deposition rates are low. In addition, 
managing the infrastructure for data depositions (interactive web page 
construction, database version control, authentication management 
and database security) and curating and correcting errors is compli-
cated and time consuming, and often beyond the capacity of academic 
database developers.

The extensive and often manual data entry requirements for journal 
article submission lead to ‘deposition fatigue’ for authors. The varied 
natural product-related data types (such as source organisms, MS, NMR, 
BGC and SMILES) amplify this, and increase the number of platforms that 
users must navigate to deposit raw data in open repositories. The com-
munity must therefore develop mechanisms to streamline, incentivize 
and reward data and metadata deposition, such as with the development 
of a centralized venue for pre-publication data deposition that can 
disseminate these data to speciality databases (Fig. 5).

Two principal avenues exist to incentivize data deposition to 
public repositories: ‘value added’ and ‘requirements’. First, author-
ships during data ‘curatathons’, increased citations, opportunities for 
collaboration and facilitated automated re-analysis are very beneficial 
for depositors175. An example of added value is ReDU, which aids in 
rapid re-analysis of existing and future data176 through subscription 
to one’s own and public datasets172. Alternatively, repositories can 
offer validation reports, quality metrics, prevalence statistics (for 
example, the statistics page of MIBiG4 that facilitates cross-species 
comparisons of biosynthetic potential) and other feedback on data 
to depositors that provides a tangible and immediate benefit to depo-
sition. We acknowledge that, at present, data deposition is usually 
a long process that requires submitters to fill in as much metadata 
as possible following ontologies or controlled vocabularies. These Re
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extended processes should become more user friendly; for example, 
by including an autofill during metadata reporting, using tools that 
automatically generate entries from well-defined ontologies and auto-
mated emails to authors with filtered web-crawled data that authors 
can complete and send into relevant repositories.

Second, journals and/or funding agencies can mandate data depo-
sition, eliminating the need for incentives. An excellent example of this 
is a recent announcement that the Journal of Natural Products requires 
the deposition of raw NMR data starting in July 2023 (ref. 177). Regard-
less of the motivation, promoting community-driven data deposition 
is indispensable to making the natural products field AI compatible.

The need for data standardization
The foundation of high-quality datasets begins with experimental 
design and practice, the key being consistency. Currently, the most 
extensive, high-quality natural product-related datasets in the public 
domain have been generated by a few laboratories. Typically, however, 
the value of these datasets is limited owing to the lack of sample diversity 
and the limited number of data types available for a single study. Fur-
thermore, even if appropriate controls and replication are used, there 
can be fundamental differences in the quality and quantity of detected 
features for the same sample set, as demonstrated for intra-laboratory 
liquid chromatography (LC)–MS/MS analyses178. As a result, a global 
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Fig. 5 | Depositing and sharing natural product data: infrastructure 
and incentives. Diverse types of data on the structures, biological activities and 
biosynthetic pathways of natural products can be deposited into dedicated 
community databases, allowing their reuse as well as providing training data for 
artificial intelligence (AI) algorithms. As standardized deposition of such data 
will be crucial for the future of AI-driven natural product drug discovery, it will be 
important to provide the scientific community with clear incentives and rewards 

to submit and share their data. This includes opportunities for collaboration, 
online (comparative) analysis capabilities linked to these databases, 
community-driven annotation and knowledge build-up and increasing impact 
through follow-up work and the citations that result from this. GNPS, Global 
Natural Product Social Molecular Networking; NP Atlas, Natural Products Atlas; 
NP-MRD, Natural Products Magnetic Resonance Database.

http://www.nature.com/nrd


Nature Reviews Drug Discovery | Volume 22 | November 2023 | 895–916 909

Review article

assemblage of data would be incredibly valuable; yet challenges exist 
of poor interoperability (that is, connecting data between resources) 
and weak compatibility (that is, resources use different standards and 
ontologies to annotate and identify their contents).

It is important to note that the quality of biologically derived data 
(for example, MS resolution and/or accuracy, gene-sequencing depth 
and/or error rate) should be defined in light of the desired outcome. The 
metabolomics field, for example, has initiated the Metabolomics Stand-
ards Initiative179, which describes key parameters to report to facilitate 
quality assessment. Often, AI tasks rely on having a large corpus of data 
to train and/or search (for example, clustering MS/MS spectra180 and 
binning metagenomes181). One challenge with this requirement is that 
experimental datasets may contain only a single or very few representa-
tives in each class, limiting their value for model building. Dedicating 
the effort to creating comprehensive training sets is an essential step 
for the field as it looks to embrace AI technologies.

To achieve standardization, a key focus must be the interoper-
ability between existing natural product databases. At present, 
most database managers communicate updates on an ad hoc basis. 
In addition, some databases such as NP Atlas maintain interoperable 
application programming interfaces (APIs) to enable regular, auto-
matic data crawls between resources. However, this becomes exceed-
ingly complex if databases operate in a continuously updating fashion, 
mainly if resources use varied data standardization strategies, such as 
PubChem versus ChEMBL structure standardization protocols.

Besides specific, persistent identifiers, data interoperability 
requires common languages (that is, controlled vocabulary). Open 
standards have an essential role here, defining exchange formats, 
vocabularies and ontologies, and experimental protocols. For example, 
they could facilitate accurate description and reporting of the struc-
tural characterization of natural products182. Furthermore, the adop-
tion of universal spectrum identifiers (USIs) to identify mass spectra in 
proteomics183 and metabolomics184 showcases standardization tools, 
enabling data analysis across datasets. Such tools have a pivotal role  
in enabling large-scale studies by structuring omics data and represent 
an area of development that the natural product community should 
consider. The implementation of semantic web approaches is also 
an essential step forwards, which standardizes how we disseminate 
knowledge and data and integrate exchange formats, linking between 
resources and ontological representation185. An overview of current 
natural product ontologies is provided in Table 2.

The need for standardization in describing bioactivities of natural 
products and ensuring that experimental conditions are comparable 
between laboratories is apparent. Although standards exist for reporting 
the biological activities of purified compounds (for example, ChEMBL163, 
PubChem186, Supernatural II187 and NPASS188), such standardization 
does not extend to microbial crude extracts and fractions. In addition, 
metadata such as extract preparation methods can substantially impact 
bioactivity data, yet they are rarely recorded in natural product data-
bases. Finally, as further discussed below, experimental conditions must 
be described as accurately as possible, with scientists preferably using 
the same growth conditions for their experiments. Overall, although 
it is clear that the move towards FAIR (findable, accessible, interoper-
able and reusable) data and metadata is happening in natural product 
research, many depositions still fail to include all required components.

The need for data annotation
In addition to essential metadata (such as sample taxonomy, extract 
preparation protocol and instrument parameters), the addition of 

contextual annotations can greatly increase the value of natural prod-
uct datasets. For example, accurate annotation of compound structures 
to metabolomics datasets would provide many opportunities to build 
machine learning models that integrate structural and biological and/or 
genomic data.

However, creation of annotated datasets faces two significant 
hurdles. The first is that most datasets can be annotated in many differ-
ent ways, making it unrealistic to aggregate annotations from different 
studies into a single monolithic training set. Secondly, most annota-
tion methods include elements of bias and false assignment that will 
influence model structure and accuracy. Therefore, although dataset 
annotation by subject experts is very valuable for AI developers, the 
creation and adoption of annotation standards for core information 
types should be seen as a priority for the field.

The need for data integration
The value of linked or paired data. As omics technologies mature, 
there is an increasing need for data integration between platforms. This 
is relevant to the development of AI models because some questions 
can be answered only by considering data from multiple data types. For 
example, large-scale integration of NMR spectra and MS fragmentation 
data could dramatically affect the accuracy and coverage of automated 
compound identification platforms.

Integration of natural product data involves two core activities: 
the pairing of datasets for analysis, such as that of the paired omics 
data platform, or the linking of raw or processed data across data types, 
such as the peptidogenomics, glycogenomics, metabologenomics or 
NPLinker platforms189–196. In the first case, the objective is to define 
which data types exist for each sample, whereas in the second case, 
the goal is to perform paired analyses whereby both data types are 
mined at the same time197. An example of this combined data approach 
is the integration of enzyme-constrained models and omics analysis of 
Streptomyces coelicolor to reveal metabolic and genetic changes that 
enhance heterologous production198. Transcriptomics has also been 
used as a constraint to improve the statistical association of BGCs 
from genome data to metabolites in metabolome data by identifying 
which BGCs are in fact expressed under the conditions in which certain 
metabolite features are observed199.

Methodology and opportunities for data integration. Data integra-
tion faces several current challenges that are mostly centred around 
inter-dependencies of the data types and the various data formats that 
need to ‘talk’ to each other. Fortunately, early tools such as NPLinker190, 
GraphOmics200 and anvi’o201 are starting to overcome some of these 
challenges. However, the number of tools available that facilitate and 
ease the analysis and interpretation of linked data is currently very 
limited, with users still needing considerable expertise to interpret 
the results. Furthermore, overparameterization of models is a risk 
when linking two or multiple datasets. For example, the same informa-
tion can be present in more than one data type; it is then essential to 
effectively correct for that to avoid bias. Another bottleneck is getting 
the data in the appropriate format so it can be used by AI algorithms. 
Standardization remains the main issue here, particularly in areas such 
as metabolomics where the data are inherently heterogeneous owing 
to the nature of the samples.

The fields of genomics, proteomics and transcriptomics have all 
developed excellent community standards that have encouraged data 
standardization. Outstanding challenges with separating and identify-
ing individual components from complex mixtures have hampered 

http://www.nature.com/nrd
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Table 2 | Recommended ontologies and controlled vocabularies for natural product research

Ontology name Focus Description

Biology

Plant Ontology (PO) Controlled vocabulary, formats, standards Structured description of terms to plant anatomy, morphology and growth 
and development to plant genomics data

BRENDA Tissue Ontology (BTO) Controlled vocabulary, formats Structured description for enzyme sources: tissues, cell lines, cell types and 
cell cultures

Gene Ontology (GO) Controlled vocabulary, formats, standards Framework and set of concepts for describing the functions of gene products

PIERO Enzyme Reaction Ontology Controlled vocabulary, standards Description of partial reaction characteristics of enzymatic reactions

Phenotype And Trait Ontology (PATO) Controlled vocabulary, formats Description of phenotypic qualities: properties, attributes and characteristics

NCBI Taxonomy (NCBITAXON) Controlled vocabulary NCBI organismal taxonomy

BioAssay Ontology (BAO) Controlled vocabulary, formats, standards Description of the biological screening assays

Chemistry

ChEBI Controlled vocabulary, chemical classes, 
standards

Structured classification of ‘small’ chemical compounds of biological interest

NPClassifier Ontology Semantic vocabulary and categories in 
natural products

Structured description of terms for secondary metabolism in natural 
products

ChemOnt (from ClassyFire) Controlled vocabulary, formats Structured description of terms by extracting common or existing chemical 
classification category terms from the scientific literature and available 
chemical databases

Chemical Information Ontology 
(CHEMINF)

Controlled vocabulary, formats Terminology for the descriptors commonly used in cheminformatics software 
applications and algorithms

Chemical Methods Ontology Controlled vocabulary Description of the methods and instruments used to collect data in chemical 
experiments

Reaction Ontology (RXNO) Controlled vocabulary Reaction-name ontology

Omics

Experimental Factor Ontology (EFO) Controlled vocabulary, formats Systematic description of many experimental variables available in the EBI 
databases

Metabolomics Standards Initiative 
Ontology (MSIO)

Controlled vocabulary, formats, standards Application ontology for supporting description and annotation of mass 
spectrometry and NMR spectroscopy-based metabolomics experiments and 
fluxomics studies

Sequence types and features 
ontology (SO)

Controlled vocabulary, formats Structured controlled vocabulary for sequence annotation, for the exchange 
of annotation data and for the description of sequence objects in databases

The RNA Ontology (RNAO) Controlled vocabulary Controlled vocabulary pertaining to RNA function and based on RNA 
sequences, secondary and 3D structures

GENO ontology Controlled vocabulary, formats, standards OWL model for genotypes, their sequence components and links to 
corresponding biological and experimental entities

PRIDE Controlled Vocabulary Controlled vocabulary, formats, standards Ontology for PRIDE (proteomics identifications), a centralized, 
standards-compliant, public data repository for proteomics data

Medical/biomedical

Ontology for Biomedical 
Investigations (OBI)

Controlled vocabulary, formats, standards Description of biomedical investigations: study design, protocols, 
instrumentation, data and analyses

The Drug Ontology (DRON) Controlled vocabulary Ontology for drugs, containing ingredients, mechanisms of action, 
physiological effects and therapeutic intent

Antibiotic Resistance Ontology (ARO) Controlled vocabulary Description of antibiotic resistance genes and their mutations

Integration

Semanticscience Integrated 
Ontology (SIO)

Controlled vocabulary Integrated ontology of types and relations for rich description of objects, 
processes and their attributes

Unit Ontology (UO) Controlled vocabulary Standardized description of units of measurements

Citation Typing Ontology (CiTO) Controlled vocabulary Description of the nature of reference citations in scientific research articles 
and other scholarly works
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similar standardization efforts in metabolomics. This is particularly 
true for the field of natural products, where the range of possible 
compounds from any source organism can number in the thousands 
and where many of the structures remain to be discovered. The wide 
range of sources, processing methods, chromatographic separa-
tion conditions and analytical approaches all combine to make data 
standardization particularly difficult in this area.

Training sets for AI models and benchmarking
Requirements for high-quality training sets. Machine-readable data 
are essential for the creation of training sets for AI models. Although the 
data have often already been collected, they are either converted into 
an unstandardized written form within publications or not reported 
at all. Furthermore, well-curated and consistent metadata are also key 
to training successful models. Indeed, data can be of variable quality 
owing to inherent differences, for example, in analytical equipment 
used; however, when this is documented well, researchers can select 
the relevant data for AI.

Examples of existing natural product-based training and bench-
marking sets. Chemical structure and biosynthetic data for natural 
products are now reasonably well standardized and centralized. For 
example, the NP Atlas170,171, COCONUT202 and LOTUS203 databases pro-
vide information about chemical structures, and the MIBiG database 
contains information on BGCs169. These resources have been applied 
as training datasets for a wide array of machine learning applications, 
including the prediction of natural product-likeness of molecules204, 
de novo BGC predictions16,17, matching of chemical structures to their 
mass spectra205, automated chemical classification of natural product 
structures29 and the identification of unknown metabolites from NMR 
spectral matching47.

Using USIs for mass spectra will enable easy standardized access to 
the mass spectral data for natural products, including the underlying 
raw data. In this regard, spectral databases for natural products are 
under active development, such as the GNPS for MS and MS/MS data 
and the NP-MRD for NMR data. Importantly, entries in MIBiG, GNPS and 
the NP-MRD are now all cross-linked to the NP Atlas, creating a central 
hub that connects structural, spectroscopic and biosynthetic data for 
natural products.

By contrast, two areas that lack natural product database cov-
erage are catalytic activities of biosynthetic tailoring enzymes (key 
to predicting natural product structures) and biological activities 
(key to understanding structure–activity and structure–property 
relationships). In the former case, the absence of well-curated data 
for tailoring enzymes limits our ability to predict core structures and 
their modifications from BGC data. In the second case, the absence of 
well-standardized bioactivity training sets prevents us from predicting 
potential target space for newly discovered natural products, or natu-
ral product structures predicted from bioinformatic tools. Together, 
these two issues limit our ability to deliver on the promise offered by 
massively parallel whole-genome sequencing and large-scale discovery 
and annotation of BGCs.

Although well-curated training sets for chemical structures and 
BGCs increasingly meet the demands for creating AI models, almost 
no high-quality datasets exist for benchmarking the performance of 
AI models in genome mining (sequence quality dependent) or MS data 
(instrument parameter dependent). As a result, various datasets are cur-
rently used for performance comparisons, making it difficult to reliably 
establish how well a novel algorithm truly outperforms its predecessor.

Opportunities for generating standardized data sets: the case of 
biological activities. Data on biological activities and modes of action 
of natural products perhaps constitute the most crucial type of data to 
guide future natural product drug discovery. At the same time, these 
data are currently the least standardized and systematically docu-
mented. Although databases such as ChEMBL163 can host such data, 
stored using standardized ontologies206,207, the vast majority of natural 
product activity data are never deposited and can only be found in the 
text or supplementary materials of manuscripts. Additionally, the pro-
tocols by which activity data have been generated are highly diverse, 
which further frustrates the direct comparison of datasets generated 
in different laboratories. A unified effort for data standardization also 
calls for using standardized growth media and culturing conditions. 
For example, the International Streptomyces Project (ISP) media have 
been designed with this in mind. The media can be ordered from the 
same source, allowing direct comparison of growth conditions. Nega-
tive data for molecules not showing activity (equally important for 
machine learning purposes) are mostly not reported at all, leading to 
large biases in the primary literature. Populating biological activity 
databases with targeted standardized datasets and culture conditions 
would be highly beneficial. Some efforts already do exist that generate 
specific types of data. For example, the NCI60 panel of tumour cell lines 
for anticancer drug screening has existed for years, and molecules 
can be sent to the US National Cancer Institute to be subjected to this 
panel208. Similarly, CO-ADD constitutes a community-driven approach 
to antibiotic discovery209, allowing compounds to be sent to a central 
location to test their activities according to standardized protocols.

Conclusions and outlook
In summary, progress in AI for natural product drug discovery is pri-
marily limited by a shortage of large, high-quality datasets rather than 
a lack of innovative algorithms. As a general recommendation for the 
field, we caution against using new algorithms solely for their ‘hype’ 
factor. Instead of jumping on the bandwagon of the latest AI trend, 
we advise carefully considering which algorithms are best suited for 
the type and quantity of data available; the fact that natural product 
datasets are generally considerably smaller than generic computer 
vision-related datasets, for example, may mean that simpler models 
with fewer parameters may be more successful and less likely to suffer 
from overfitting; also in AI, Occam’s razor is more relevant than ever.

That said, breakthroughs in the field have been made by cross-
ing disciplinary boundaries to draw on algorithms from other fields, 
such as NLP. Algorithmic advances are especially needed to extract 
meaningful features from heterogeneous data sources with multiple 
inputs, including chemical spectra, DNA sequences, structures and 
bioactivity information. Another opportunity for the field is to adopt 
an ‘active learning’ approach towards dataset generation. By this, we 
mean characterizing underexplored areas of sequence, chemical, 
structural or bioactivity space in which gold-standard datasets are lack-
ing to increase the number of effective data points. It is also important 
to recognize that AI approaches will generally not be able to predict 
entirely novel chemistry, mechanisms of actions that have never been 
observed before or completely new catalytic activities of enzymes. 
Investments in fundamental biochemical research are needed, to shed 
light on those parts of biochemical space for which AI currently does 
not yet provide meaningful insights210.

New data-driven AI discoveries depend on underlying databases 
being preserved and maintained over time. Ironically, although AI is 
entirely reliant on high-quality data, longitudinal and stable financial 
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support for the maintenance of databases is challenging to obtain. 
Therefore, for future AI advances, we feel that continued support 
for database maintenance and interoperability should be a priority for 
international and national funding agencies. Because of the vast array 
of data types associated with natural product research it is unlikely that 
a single monolithic repository will serve the needs of the natural prod-
uct community. Instead, specialized repositories that focus on different 
aspects of natural product data (such as structures, BGCs, spectral data 
and biological activities) must focus on improving interoperability to 
develop a distributed network of data resources. This interoperability 
not only must involve the connection of entries between databases but 
also must consider integrated data deposition and the adoption of com-
mon standardization protocols for core data types. There is much to 
learn about repository structure and governance strategies from other 
areas of science, such as the Protein Data Bank for structural biology 
and the Cambridge Structural Database for X-ray crystallography. 
The natural product community must prioritize and promote these 
efforts if they are to benefit from the new and exciting applications 
being offered by AI-based technologies.

Finally, we emphasize that the collective resources of our global sci-
entific community far outweigh the capacity of any single lab. If appro-
priate incentives and guidelines are available, community-generated 
and curated datasets can have enormous potential to advance the field 
of AI-driven natural product drug discovery.

Published online: 11 September 2023
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